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ABSTRACT: Here we present a machine learning–based wind reconstruction model. The model reconstructs hurricane
surface winds with XGBoost, which is a decision-tree-based ensemble predictive algorithm. The model treats the symmet-
ric and asymmetric wind fields separately. The symmetric wind field is approximated by a parametric wind profile model
and two Bessel function series. The asymmetric field, accounting for asymmetries induced by the storm and its ambient
environment, is represented using a small number of Laplacian eigenfunctions. The coefficients associated with Bessel
functions and eigenfunctions are predicted by XGBoost based on storm and environmental features taken from NHC best-
track and ERA-Interim data, respectively. We use HWIND for the observed wind fields. Three parametric wind profile
models are tested in the symmetric wind model. The wind reconstruction model’s performance is insensitive to the choice
of the profile model because the Bessel function series correct biases of the parametric profiles. The mean square error of
the reconstructed surface winds is smaller than the climatological variance, indicating skillful reconstruction. Storm center
location, eyewall size, and translation speed play important roles in controlling the magnitude of the leading asymmetries,
while the phase of the asymmetries is mainly affected by storm translation direction. Vertical wind shear impacts the asym-
metry phase to a lesser degree. Intended applications of this model include assessing hurricane risk using synthetic storm
event sets generated by statistical–dynamical downscaling hurricane models.
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1. Introduction

Landfalling tropical cyclones (TCs) can threaten lives and
bring severe economic losses to coastal societies (Geiger et al.
2016; Peduzzi et al. 2012). In addition to causing wind damage
directly, TC surface wind contributes to coastal flooding
through storm surge (Jordan and Clayson 2008; Needham and
Keim 2014). In TC risk assessment, wind hazard is often
defined as the probability of storm winds exceeding a given
threshold at a particular location. The exceedance probabili-
ties can be estimated using parametric wind models applied to
thousands of synthetic storms that are derived using either
statistical (e.g., Hall and Jewson 2007) or statistical–dynamical
approaches (e.g., Emanuel et al. 2006; Lee et al. 2018; Jing
and Lin 2020). A typical parametric wind model consists of an
azimuthally symmetric wind field and asymmetric terms rep-
resenting a small left-to-right asymmetry induced by storm
motion (e.g., Lin and Chavas 2012). Observed surface wind
fields, however, can be highly variable with differing asymme-
tries, especially for weaker storms, storms that encounter
strong vertical wind shear, or storms that undergo extratropi-
cal transition (Loridan et al. 2015; Klotz and Jiang 2017). The
discrepancy between parametric surface wind fields and
observed surface winds motivates this study, and here we aim
to address the problem of how to add missing asymmetries to
existing parametric wind models in a manner that is consistent
with observations.

Popular methods for generating the azimuthally symmetric
field include empirical models such as Holland et al. (2010)
and Willoughby et al. (2006), and theory-based ones, such
as Chavas et al. (2015). These three models, referred as
Holland10, Willoughby06, and Chavas15 hereafter, all pro-
vide a radial profile of the symmetric TC wind that sharply
increases from storm center to the radius of maximum wind
speed (Rmax), and then gradually decreases outward to merge
with the background wind. Wood et al. (2013) generalized
this type of symmetric profile model by including multiple
wind peaks. The representation of the asymmetric TC winds
beyond storm motion-induced asymmetries has also improved
over the years. Olfateh et al. (2017) combined Holland (1980)
with the first azimuthal mode of wind asymmetry to represent
impacts from the boundary layer friction, the blocking of
high pressure systems, and the storm motion. Loridan et al.
(2015) added a horseshoe-like asymmetry to Willoughby06 to
describe wind structures associated with extratropical transi-
tions. Uhlhorn et al. (2014) formulated asymmetric wind fields
using wavenumber decomposition and approximated the full
wind fields as the sum of the wavenumber-0 (symmetric) and
wavenumber-1 components with dependence on vertical wind
shear and storm translation. Also focusing on asymmetries
induced by shear and storm translation, Chang et al. (2020)
added wind asymmetries represented by harmonic functions
to Holland10.

The above studies mostly aimed to capture asymmetric
structures induced by one or two specific factors: wind shear,
storm translation, or the extratropical transition. However,Corresponding author: Qidong Yang, qy2216@columbia.edu
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TC wind asymmetries are induced by multiple factors, their
interactions, and their nonlinear impacts on the vortex struc-
ture. Among all the factors, storm translation has long been
recognized since Shapiro (1983) as having the clearest impact
on TC wind asymmetries. Uhlhorn et al. (2014) showed that
the environmental vertical wind shear influences surface wind
asymmetries likely through its impacts on TC convection and
boundary layer structure. Using composited scatterometer
data from northwest Pacific typhoons, Ueno and Bessho
(2011) showed a preferential left-of-shear and right-of-motion
wind maximum. Wavenumber decomposition analysis from
Uhlhorn et al. (2014) with stepped-frequency microwave
radiometer data further showed that the storm motion-
induced surface wind asymmetries rotate from downwind to
right-of-wind as the storm moves faster, but the magnitude
of the asymmetries is insensitive to the forward speed.
Shear-induced asymmetries, on the other hand, rotate from
downshear to left-of-shear with increasing shear magnitude,
which is consistent with the findings of Klotz and Jiang
(2017), who used global rain-corrected scatterometer wind
data. Additionally, the blocking action from an anticyclone
near a TC can cause a mesoscale condition analogous to the
wall effect for a vortex (Olfateh et al. 2017), which impacts
TC wind structure to certain degree. Land–sea roughness
contrast (Wong and Chan 2007) and air–sea interaction
(Lee and Chen 2012, 2014), as well as the interactions
between TCs and midlatitude circulations (Komaromi and
Doyle 2018), can influence TC surface wind structure as
well.

In recent years, machine learning (ML) has made incre-
mental progress in geophysical sciences. Several recent works
have applied ML methods in TC studies. Racah et al. (2017)
and Kim et al. (2019) utilized convolutional neural networks
to detect TCs with weather model variables such as integrated
water vapor. Our recent work, Yang et al. (2020), used a long-
short-term memory model to predict TC rapid intensification
with a set of storm and environment conditions as inputs
and gives performance comparable to operational forecasts.
Loridan et al. (2017) combined supervised (quantile regres-
sion forest) and unsupervised (principal component analysis)
ML methods to model TC wind fields, suggesting that com-
plex wind field asymmetries can possibly be captured. The
successes of these ML applications stem in part from the
increasing amount of observed and simulated data and
the modeling capacity provided by ML algorithms, which
allow for approximation of any nonlinear relationship. These
works thus inspire us to apply advanced ML methods to the
problem of improving modeled wind fields by adding physical
dependencies that are missing in existing parametric modeling
approaches. Specifically, we propose an XGBoost-based recon-
struction of the symmetric and asymmetric components of
the TC surface wind field based on environment and storm
features as predictors. First proposed by Chen and Guestrin
(2016), XGBoost is a decision-tree-based ensemble predic-
tive algorithm. The model uses an optimization method
called gradient boosting (Friedman 2001) that adjusts deci-
sion trees (Quinlan 1986) to minimize the difference between
XGBoost’s prediction and the ground truth. XGBoost has

been widely utilized in classification and regression tasks on
tabular datasets. Here we use it because it achieves outstand-
ing performance on structured datasets and can be trained
very fast with parallel processing.

The remainder of this paper is organized as follows. The
observed storm, environment, and the HWIND data used
to train and test the XGBoost models are described in
section 2. Feasibility of the HWIND data for wind field
reconstruction model development is evaluated in section 3.
The model development details are specified in section 4.
The performance of the reconstruction model is discussed in
section 5, along with a wind field reconstruction case study.
Section 6 provides further analysis on the relationship between
wind field asymmetries and storm and environment variables,
which play a crucial role in the reconstruction model. We
summarize and discuss our findings in section 7.

2. Data and methods

a. Tropical cyclones and their environment

Here we develop the wind reconstruction model using the
same set of storm and environment variables as used in
Yang et al. (2020). The storm variables are derived from the
National Hurricane Center (NHC; Landsea and Franklin
2013) best-track data, and the environment variables are
taken from the monthly European Centre for Medium-
Range Weather Forecasts interim reanalysis (ERA-Interim;
Dee et al. 2011) database. The monthly environment varia-
bles are then linearly interpolated to storm time stamps. We
use monthly environmental variables because our intended
application is TC wind risk assessment in a changing climate
using a statistical–dynamical downscaling approach that
combines large-scale climate information from dynamical
models or reanalysis with statistical models to produce
storm-scale features (e.g., Lee et al. 2020). In this applica-
tion, we need to generate wind fields for thousands of syn-
thetic storms over a long period (e.g., 1951–2100), and with
climate forcing from many global models. Using monthly
environmental variables reduces the data storage burden.
This also removes the need to filter modeled or observed
storms from environmental variables. Of course, this
approach will not capture changes that are due to sub-
monthly environmental variability.

A total of 30 variables (8 storm variables and 22 environment
variables) are used in this work. Storm variables describe the
storm status at the time of a wind field snapshot and include
quantities such as storm maximum wind speed, storm center
location, and storm translation (Table 1). Environment varia-
bles, computed from a 0.258 3 0.258 global grid, depict the
large-scale conditions in the neighborhood of the storm and
include vertical wind shear, relative humidity, outflow tempera-
ture, high-level divergence, and so on as listed in Table 2. We
represent storm translation and vertical wind shear by their
zonal and meridional components (i.e., SHz and SHm for shear
and MTz and MTm for storm motion) to avoid the inherent
ambiguity of angular variables, which can make their use in
ML models cumbersome. Some environment variables are
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averaged over a small disk centered on the storm and others
are averaged over a large annulus. Disk-averaged variables are
averaged over the area within 500 km from storm center while
annulus-averaged ones are averaged over a ring-shaped area
with inner radius of 200 km and outer radius of 800 km from
storm center. The former averaging method is intended to cap-
ture environment conditions around storm center while varia-
bles averaged over a large annulus aim to describe surrounding
conditions in which the storms are embedded.

TC intensity and storm structure are not unrelated}strong
storms are more symmetric than weaker ones (Klotz and Jiang
2016, 2017; Sun et al. 2019). While those aforementioned vari-
ables are originally derived for TC intensity prediction (Lee
et al. 2015, 2016; Yang et al. 2020), they are suitable for storm
structure prediction as well. For example, vertical wind shear
is typically a negative factor for intensification by tilting the
storm vortex and transporting dry air into the inner core. A
known impact of the above vertical wind shear process on TC
structure is that the strongest convection focuses in the

downshear-left quadrant. Uhlhorn et al. (2014) showed that
this convective asymmetry may result in surface wind asymme-
tries when the shear is sufficient. The work by Knaff et al.
(2017) also illustrates a successful example of predicting storm
structure using intensity-related variables. Besides, as sug-
gested in Loridan et al. (2017), more complex TC environmen-
tal features which characterize the atmospheric flow, such as
the relative humidity and upper-level divergence, should also
be considered for better surface wind field prediction.

Two additional variables, the maximum azimuthally aver-
aged wind speed (Vmax) and its corresponding radius (Rmax)
that are often used in the parametric wind profiles are included
in the reconstruction model development, too. In this study, we
derive Vmax and Rmax from azimuthally averaged HWIND pro-
files and regard them as known. In practice, Vmax can be esti-
mated by a linear fit of storm maximum wind speed (Smax)
provided by best track data, and Rmax can be obtained through
an empirical equation from Knaff et al. (2015), theory-based
model from Chavas and Lin (2016), or a combination of theory

TABLE 1. Storm variables.

Notation Definition

lat Storm center latitude
Vmax Maximum wind speed of azimuthally averaged wind field
Rmax Radius where Vmax is achieved
Smax Storm maximum wind speed
dS/dt 12-h change of storm max wind speed
MT Storm translation speed magnitude
MTz Storm translation speed in zonal direction in Earth coordinates
MTm Storm translation speed in meridional direction in Earth coordinates

TABLE 2. Environment variables. Variables presented here are derived at storm center, averaged over a disk, or averaged over an
annulus. Disk-averaged variables are averaged over the area within 500 km from storm center while annulus-averaged ones are
averaged over a ring-shaped area with inner radius of 200 km and outer radius of 800 km from storm center.

Notation Definition

PIp Potential intensity in minimum sea level pressure at the storm center
PIpd Potential intensity in minimum sea level pressure, disk averaged
PIs Potential intensity in maximum wind speed at storm center
PIsd Potential intensity in maximum wind speed at storm center, disk averaged
T100 Ocean temperature averaged over top 100 m, at storm center
T100d T100 but averaged over 100 km storm-centered, disk averaged
T200 Temperature at 200 hPa at storm center
T200d T200, annulus-averaged
SH Vertical wind shear magnitude
SHz Vertical wind shear (zonal) between 850 and 200 hPa at storm center in Earth coordinates
SHza SHz, annulus averaged
SHm Vertical wind shear (meridional) between 850 and 200 hPa at storm center in Earth coordinates
SHma SHm, annulus averaged
D200 Divergence field at 200 hPa
D200a D200, annulus averaged
dPIp/dt Change in potential intensity of minimum sea level pressure over 12 h
RHl Low level relative humidity (850–700 hPa) at storm center
RHla RHl, annulus averaged
RHh High level relative humidity (500–300 hPa)
RHha RHh, annulus averaged
SLM Storm location mark: land or ocean
P 2 S PIsd 2 Smax

Y ANG E T AL . 479APRIL 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/04/22 01:21 PM UTC



and data (Chavas and Knaff 2022). A recent study by Knaff and
Chavas (2021) notes that estimating Rmax without direct recon-
naissance measurements is challenging.

b. HWIND

The observed TC wind fields are from the Hurricane
Research Division hurricane surface wind analysis system
[HWIND, now Risk Management Solutions (RMS) HWind as
per the RMS website] (e.g., Powell et al. 1998; DiNapoli et al.
2012). These wind fields are produced by interpolating and
smoothing wind speed observations from multiple platforms
including stepped-frequency microwave radiometers, satellites,
GPS dropsondes, ships, buoys, and land-based observation sta-
tions. We use HWIND data within radii ranging from 0 to 300
km from storm center because radii up to 300 km are generally
large enough to cover a storm’s main structure. Data at normal-
ized radius (radius divided by Rmax) are linearly interpolated.
Here Rmax denotes the radius where the HWIND azimuthally
averaged wind speed maximum achieved. From 2000 to 2014,1

the dataset contains 1539 Atlantic hurricane surface (10 m)
wind speed field snapshots from 112 hurricanes. Since the size
of the HWIND dataset is limited and ML-based models have a
high demand for training data, a higher than usual proportion
of the dataset is used for model training: 93.75% of the
HWIND storms (105 storms, 1410 wind field snapshots) are
randomly chosen and used as training set. The remaining 6.25%
of the storms (7 storms, 129 wind field snapshots) are saved as
an independent testing set for model performance evaluation.
In terms of the number of wind field snapshots, over 8% of
them are used for performance evaluation.

An additional experiment with a second kind of training-
testing set split (by wind field snapshots) was conducted (not
shown). In this alternative approach, we randomly chose 92%
of snapshots as the training set and the rest as the testing set.
The evaluation results from this splitting method were even
more promising. However, wind fields from the same storm

are correlated in time because similar surface winds affecting
storm-scale and environmental conditions will continue over
multiple snapshots and result in similar snapshots for the same
storm. Splitting that data by snapshot may unfairly put testing
set answers into the training set, i.e., the testing data are not
independent of the training data. Consequently, the alternative
splitting approach leads to an overfitting on training data, and
the resultant reconstruction model will have weak generaliza-
tion ability on truly independent data. Therefore, we choose
splitting by storms rather than splitting by wind field snapshots.

c. Skill scores

Model performance is evaluated on the independent testing
dataset by computing the mean square error skill score
(MSESS) of various predicted quantities. The MSESS of N
forecasts ŷi with verifying observations yi is

MSESS � 1 2

∑N
i�1

yi 2 ŷi
( )2

∑N
i�1

yi 2 yref( )2
, (1)

where yref is a reference forecast. Here we use either the cli-
matological value (average) of yi in the training dataset or the
value predicted by a parametric wind profile model. Positive
MSESS indicates that the reconstruction model has skill
greater than the reference forecast; negative MSESS indicates
otherwise. The maximum possible value of MSESS is 1, mean-
ing perfect predictions.

3. A feasibility test of wind fields in HWIND

The fact that HWIND fields are an interpolated estimate of
the reality and are smoother than simulations from high-reso-
lution weather prediction models (Klausmann 2014; Done
et al. 2020) raises the question of whether HWIND captures
known relationships with the two dominant factors: storm
translation and vertical shear.

FIG. 1. (a),(b) Radial wind speed profile composites of the azimuthally averaged HWIND wind fields. The x axis
shows radii normalized by radius of maximum wind speed (Rmax). In (a) and (b), blue (orange) curves are composites
with translation speed MT and shear magnitude SH greater (less) than the respective medians from the sample data.

1 Data after 2014 are not publicly available.
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Figure 1 shows that the wind speed composite of azimuth-
ally averaged HWIND is larger for larger translation magni-
tude (MT), which is in agreement with the study by Mei et al.
(2012), who showed a strong positive correlation between
storm intensity and motion. On the other hand, HWIND data
for storms in more sheared environments (SH greater than
the median) tend to have lower symmetric wind speeds
because of the negative impact of vertical wind shear on storm
intensity as discussed previously.

The asymmetry composites of four cases (fast versus slow
motion, and high versus low shear) are shown in Fig. 2 in
motion and shear coordinates, by which we mean the asym-
metries are shown relative to the storm motion and shear
directions. Here, fast versus slow motion cases are analyzed in
the motion coordinates, and the high versus low shear cases
are studied in the shear coordinates. There is a right-of-
motion and left-of-shear asymmetry maximum in Figs. 2a,b
and Figs. 2d,e, respectively, which is in agreement with find-
ings from Ueno and Bessho (2011). The magnitude of asym-
metries, not the phase of asymmetries, in HWIND increases
with translation speed magnitude (Figs. 2a–c), which differs
from Uhlhorn et al. (2014), who show the storm translation
speed impacts the phase of the asymmetries but not the

magnitude. It is possible that the analysis assumptions used in
HWIND or its input data (such as flight-level wind) lead to
such dependence. Interestingly, Uhlhorn et al. (2014) showed
that flight-level wind asymmetry magnitude increases with the
storm translation speed. This dependence was also found in
Mueller et al. (2006), who showed that there is an improve-
ment in the estimation of flight-level wind using infrared satel-
lite data when storm motion is considered. Figures 2d–f reveal
no strong connection between asymmetry magnitude and ver-
tical shear magnitude (SH), but do show the phase of the
asymmetries rotates from left-of-shear to downshear-left with
increasing SH. Figures 1 and 2 indicate that HWIND symmet-
ric and asymmetric wind fields depend realistically on storm
motion and shear, and that it is reasonable to use HWIND in
developing a wind reconstruction model.

4. Model development

a. Reconstruction model design

The surface wind field is the sum of a symmetric and an
asymmetric component:

wind field � symmetric field 1 asymmetric field: (2)

FIG. 2. HWIND asymmetric wind field composites based on storm translation speed MT and vertical wind shear magnitude SH. The
dashed circle and the number beside it represent the normalized radius. The black and red arrows denote storm motion and wind shear
directions. The composites are constructed in (a)–(c) motion and (d)–(f) shear coordinates. In motion coordinates, up is downwind (the
storm translation direction, DW), down is upwind (UW), left is left-of-wind (LW), and right is right-of-wind (RW). For the shear coordi-
nates, up is downshear (the vertical wind shear direction, DS), down is upshear (US), left is left-of-shear (LS), and right is right-of-shear
(RS). Panels (a) and (b) show composites with MT greater and lower than the MT median while (d) and (e) are for those with SH greater
and lower than the SH median. Panels (c) and (f) are the differences between (a) and (b) and (d) and (e).
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The symmetric field is approximated by a parametric wind
profile model (e.g., Chavas15) along with two series of Bes-
sel functions. The Bessel functions serve as parametric pro-
file corrections by fitting to the residual between the
azimuthally averaged wind speed and the parametric pro-

file. One series of Bessel functions is for the inner region
rp # Rmax, and the other one is for the outer region
rp $ Rmax; rp is the profile radius ranging from 0 to Ru (i.e.,
300 km). This approximation is summarized in the follow-
ing equation:

azimuthal average 2 parametric profile � residual profile ≈ ∑‘
n�1

AnJ0 kn
rp

Rmax

( )
1 rp #Rmax
( )

1
∑‘
n�1

BnJ0 kn
Ru 2 rp

Ru 2 Rmax

( )
1 rp $Rmax
( )

, (3)

where the J0(·) is the zero-order Bessel function and ln is the
nth positive root solving J0(·) = 0; 1 is the indicator function,
which is one when its argument is true and zero otherwise.
The terms An and Bn are the coefficients associated with the
inner and outer series of Bessel functions. The coefficients
are obtained by area-weighted least squares fitting to the
HWIND data. The functional dependence of the outer series
on rp means that the Bessel function is reversed and shifted so
that it is zero at rp = Rmax. The reason we use separate series
of Bessel functions to fit residual profile before and after Rmax

is to ensure that the fitted residual profile is zero at Rmax.
Thus, by construction, the Bessel function corrected paramet-
ric profile matches the targeted azimuthal average at Rmax.

The asymmetric field accounts for asymmetries induced by
the storm and its ambient environment. We decompose it
using Laplacian eigenfunctions on the unit disk:

asymmetric field ≈ ∑‘
m�1

∑‘
n�1

Asymmetrym,n

� ∑‘
m�1

∑‘
n�1

am,nHa m,n( ) 1 bm,nHb m,n( ),

(4)

where am,n and bm,n are the coefficients associated with the
eigenfunctions Ha(m, n) and Hb(m, n). The coefficients are
computed using area-weighted least squares and the eigen-
functions are defined as

Ha m, n( ) � Nm,nJm km,nr
( )

cos mu( ),
Hb m,n( ) � Nm,nJm km,nr

( )
sin mu( ), (5)

in which Nm,n denotes the normalization factor such that� �
H m,n( )2rdrdu � 1; r and u are the unit radius and azimuth

angle in Earth coordinates; Jm(·) is themth-order Bessel function
of the first kind, and lm,n is the nth positive root of Jm(·) = 0.
The index m corresponds to the wavenumber in the azimuthal
direction, and the index n plays a similar role but in the radial
direction [seeHa(m, n) andHb(m, n) plot examples in Fig. 10].

b. Symmetric field approximation

To approximate the symmetric field, we first explore three
commonly used parametric wind profile models: the Holland10,
Willoughby06, and Chavas15 models. The Holland10 model
is an improved version of Holland (1980) which tends to

overestimate wind decay with radius and leads to an underes-
timation in wind speeds at storm’s outer regions (Willoughby
and Rahn 2004). The Willoughby06 model is composed
of three segments of piecewise-continuous wind profiles:
the inner eyewall segment where wind speed increases in pro-
portion to a power of radius, the outer eyewall segment which
is designed to decay exponentially with radial e-folding dis-
tance, and a radially varying polynomial ramp function that
concatenates the first two segments. The Chavas15 model
consists of two theoretical solutions to the structure at the top
of the boundary layer in the inner ascending (Emanuel and
Rotunno 2011) and outer descending (Emanuel 2004) region.

These wind profile models take as inputs the maximum wind
speed (Vmax) and its corresponding radius (Rmax) to generate
radial profiles of azimuthally averaged wind speed from storm
center to outer radii. Additional profile shape adjusting parame-
ters (e.g., peripheral wind observation and its associated radius)
can also be provided to improve the fit. In this work, all three
models take in Vmax and Rmax, and the Willoughby06 and Cha-
vas15 models additionally depend on storm center latitude and
Coriolis parameter, respectively. In Holland10, external pressure,
central pressure, peripheral wind radius, and peripheral wind
observation are set to 1005 hPa, 950 hPa, 300 km, and 17 m s21,
respectively, according to the profile baseline in Holland et al.
(2010). As for Chavas15, the drag coefficient is obtained follow-
ing Donelan (2004); the ratio of the exchange coefficients of
enthalpy and momentum is computed by a quadratic fit from
Chavas et al. (2015); an empirical adjustment suggested in Chavas
et al. (2015) is applied to profile eye; and radiative-subsidence
rate is fixed to 2 3 1023 m s21. Chavas15 can also be simplified
by setting Coriolis parameter constant to 53 1025 s21. It changes
resultant parametric profiles, but does not affect the finally
approximated symmetric fields after Bessel function correction.

Profile examples from these three models are illustrated
in Fig. 3. By construction, all three match the observed wind
speed at Rmax. The Holland10 and Chavas15 models have a
better fit inside Rmax than the Willoughby06 model, but they
overestimate wind speed outside Rmax. The distance outside
Rmax makes up roughly two thirds of the whole modeling
radius range. Consequently, in a mean square error sense
(not area weighted), the Willoughby06 model performs rela-
tively better than the other two in this example. Figure 4
further shows the root-mean-square error (RMSE) of
the three wind profile models over the HWIND dataset.
Willoughby06 and Chavas15 perform similarly for 1–3 Rmax;
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Chavas15 is better for 0.5–1 Rmax and Willoughby06 is better
beyond 3 Rmax. We note that TC wind damage happens dispro-
portionately due to the strongest winds which occur near Rmax.
The Chavas15 model outperforms both the Willoughby06
and Holland10 models in terms of RMSE from 0 to 3 Rmax.
Nevertheless, as mentioned previously, two series of Bessel
functions serve to further improve the representation of the
symmetric wind component. Thus, what we require is only a
profile model that gives a reasonable starting point, and all
three models explored here are adequate for this purpose. In

the rest of the paper, we will use the Willoughby06 model as
an example.

The other ingredients of the symmetric wind modeling here
are the two series of Bessel functions [Eq. (3)] for modeling
the residual symmetric profile inside and outside Rmax. In
practice, we must truncate these two series. Our experiments
show that the residual profiles (either before or after Rmax)
can be approximated sufficiently well using the first four
terms. Thus, the azimuthally averaged wind speed approxima-
tion formula is

azimuthal average approx: ≡ ∑4
n�1

AnJ0 kn
rp

Rmax

( )
1 rp #Rmax
( )

1
∑4
n�1

BnJ0 kn
Ru 2 rp

Ru 2 Rmax

( )
1 rp $Rmax
( )

1 parametric profile: (6)

Then the symmetric field can be produced by unfolding
(i.e., repeating) the estimated profile azimuthally. The effec-
tiveness of this truncation is verified in Figs. 3 and 4. In Fig. 3,
the profile simulated by Eq. (6) (magenta curve) is close
to the observed profile (black curve) both before and after
Rmax. The RMSE of Eq. (6) in Fig. 4 (magenta curve) has the
lowest value roughly throughout the whole normalized radius
range. Note that the Bessel function coefficients used in these
two figures are obtained from fitting to observations (as
opposed to being predicted as we will discuss later). In other
words, the demonstrated results show the error due to trunca-
tion, which represents a lower bound on the prediction error.

We also tried to use only Bessel functions to approximate
wind profiles (with no parametric profile involved). In Fig. 4,
the yellow curve represents RMSE from profiles fitted by a

single Bessel function series (eight terms) for the full radial
range and the cyan curve is from profiles fitted by two series
of Bessel functions (four terms for rp # Rmax and four terms
for rp $ Rmax). The yellow curve shows rather large RMSE.
In contrast, the cyan curve is quite close to the magenta
curve. However, it does not imply that parametric profiles
are not necessary. In practice, the Bessel function coeffi-
cients from symmetric models need to be predicted by
XGBoost. The benefit of including the parametric profiles
is that the wind reconstruction model is always given a rea-
sonable profile to start with. Even though XGBoost gives
poor Bessel function coefficient predictions, the final result
will not be totally unreasonable. Therefore, a parametric
profile combined with the two Bessel series is still the opti-
mal choice.

FIG. 3. An azimuthally averaged wind profile of Hurricane Isaac
(2012) from HWIND (black), and the corresponding simulated
profiles from Willoughby06, Holland10, and Chavas15 denoted by
the red, green, and blue curves, respectively. The magenta curve is
the profile approximated by Willoughby06 along with two series of
Bessel functions.

FIG. 4. The RMSE of the Willoughby06 (red), Holland10
(green), and Chavas15 (blue) models over HWIND dataset in nor-
malized radius. The yellow (cyan) curve is the RMSE from the
profiles fitted by a single (two) series of Bessel functions, while
the magenta curve is from the profiles approximated by the
Willoughby06 model along with two series of Bessel functions.
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c. Asymmetric field approximation

Next, we consider the approximation of the asymmetric
field by truncating the eigenfunction series in Eq. (4). As M
and N increase, higher-frequency asymmetries are added,
and truncation error decreases (Fig. 5). The truncation
error decreases slowly after M = 3 and N = 4; the asymmet-
ric modes that appear most useful in approximating the
asymmetric fields are Asymmetrym,n with m ∈ {1, 2, 3},
n ∈ {1, 2, 3, 4}.

The asymmetric field approximation then can be defined as

asymmetric field approx: ≡ ∑3
m�1

∑4
n�1

am,nHa m, n( )

1 bm,nHb m,n( ): (7)

Substitution using Eqs. (4) and (5) shows that

Asymmetrym,n � Nm,nJm km,nr
( )

am,ncos mu( ) 1 bm,nsin mu( )[ ]
� Mm,nNm,nJm km,nr

( )
cos m u 2 Pm,n( )[ ]

,

(8)

where the magnitudeMm,n and phase Pm,n are

Mm,n �

















a2m,n 1 b2m,n

√
, Pm,n � 1

m
atan2

bm,n

am,n
: (9)

In particular, atan2(·) is the four-quadrant inverse tangent.
Figure 6 shows that the three asymmetries with largest magni-
tude in the HWIND dataset are Asymmetry1,1, Asymmetry1,2,
and Asymmetry2,1.

d. The complete reconstruction model

The reconstructed wind is the sum of the symmetric and
asymmetric wind approximations. There are two sets of
unknowns: Bessel function coefficients (An and Bn) in the
symmetric approximation and eigenfunction coefficients (am,n

and bm,n) in the asymmetric approximation. Together there

are 32 coefficients to be determined: An and Bn for n = 1,2,3,4,
and am,n and bm,n form = 1, 2, 3 and n = 1, 2, 3, 4. Each coeffi-
cient is predicted separately by an XGBoost model trained
with the input variables listed in Tables 1 and 2. The hyper-
parameters of XGBoost models (e.g., learning rate and
max depth of trees) are tuned on the training set using five-
fold cross validation. The chosen hyperparameters are
listed in Table 3. Then the XGBoost models are trained
on the complete training set. The performance of the
reconstruction model is last evaluated on the independent
testing set.

It is emphasized that in this study, the wind reconstruction
model is developed using HWIND fields in Earth coordinates
with radii up to 300 km from storm center. Normalized radius
grid as well as motion and shear coordinates are only used for
analyzing and evaluating the input data and the simulated
results.

FIG. 6. Magnitude of asymmetries atm and n.

FIG. 5. The truncation error of asymmetric fields with increasing (a)M and (b) N. TheM and N are the upper limits of
the sums in Eq. (4); N andM are kept as constants as 10 in (a) and (b), respectively.
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5. Performance evaluation

a. Coefficient prediction

The MSESS values for each predicted coefficient are listed
in Table 4. The coefficients associated with the symmetric
component (An and Bn) are predicted more accurately than
those associated with the asymmetric component (am,n and
bm,n). Lower wavenumber asymmetries (smaller m and n) are
more accurately predicted than higher wavenumber ones
(biggerm and n).

b. Case studies

We illustrate the reconstruction model using a wind field
snapshot from a storm that is not included in the training set,
Hurricane Isaac (2012), as a case study. We first compare the
HWIND observation (Fig. 7a) with the optimal reconstructed
wind field (Fig. 7b), which is when the coefficients in Eqs. (6)
and (8) are computed from the HWIND data directly. This
comparison shows that the optimal reconstruction captures
the main characteristics of the HWIND data, including the
magnitude and the location of the peak wind. The difference
between the HWIND observation and the optimal recon-
struction is the approximation error (Fig. 7d) which contains
length scales and structures that the reconstruction model
cannot resolve. The XGBoost reconstructed wind (Fig. 7c) is,
by subjective observation, a satisfactory match to the HWIND
observation, but with wind speed underestimation around
wind peak. The largest positive differences (red) between the
XGBoost reconstructed wind and the HWIND observation
are to the southeast (upwind) of the storm center (Fig. 7e),
and the largest negative differences (blue) are over land to
the northwest (downwind). The errors over land suggest that
the input variables do not provide enough information to cap-
ture abrupt wind speed decreases over land due to land–sea
roughness contrast. Differences between the XGBoost recon-
structed wind and the optimal reconstructed wind are similar
in pattern and magnitude but spatially smoothed (Fig. 7f).
Overall, the proposed model is able to reconstruct wind fields
with acceptable error in the open sea with a caveat of tending
to overestimate wind speed over land. It is because the sharp
transition from smooth ocean to rougher land will be
smoothed out by the model.

c. Reconstructed surface wind

We compute the MSESS for the reconstructions of the sym-
metric, asymmetric, and full wind fields (Fig. 8). Climatologies
used for the reference forecast in Eq. (1) are calculated
from the training set. For the symmetric fields, we used
the symmetric field climatology from HWIND (Fig. 8a) and
Willoughby06 parametric fields (Fig. 8b) as the reference
forecast, respectively. Basically all the MSESS values are posi-
tive with respect to climatology, and values greater than
0.9 concentrate within 3 Rmax (Fig. 8a). In Fig. 8b, MSESS val-
ues are positive almost everywhere on the disk except at the
center (white dot) and Rmax (white ring). To match the
ground truth, we manually set the reconstructed symmetric
fields to have zero wind speed at storm center, which results
in the white dot at disk center. The white ring at Rmax is due
to the Willoughby06 wind profiles matching Vmax at Rmax,
hence it is impossible to improve performance at Rmax. The
highest MSESS values are within Rmax, where the Bessel func-
tion series in the symmetric model corrects the Willoughby06
profile’s inner eye and the XGBoost models predict the corre-
sponding coefficients accurately. In Figs. 8c–e, the same
reconstructed asymmetric fields are aligned in Earth, motion,
and shear coordinates (i.e., corresponding the disk upward
represents Earth north, translation direction, and shear direc-
tion) and the MSESS is computed with respect to the clima-
tology in the corresponding coordinate system. The MSESS
values are positive at most areas of the disks. MSESS values
are lowest in motion coordinates, which indicates that the cli-
matology in motion coordinates explains relatively more vari-
ability. The low and negative MSESS values (the dark blue
and the white space) tend to concentrate at east and west in
Earth coordinates, upwind-right and downwind-left in motion
coordinates, and downshear-left and upshear-right in shear
coordinates. These patterns vary when different testing sets are
used. Figures 8f–h show the MSESS of the reconstructed full
wind fields in the three coordinate systems using corresponding
full wind field climatologies as the reference field. Most of the
areas inside 3 Rmax on the three disks have MSESS values
greater than 0.8 (yellow). This is the region where winds are
strong, and severe TC wind damages usually occur, and also the
most challenging area for parametric models due to the turbu-
lent nature of moist convection. It is, however, the most skillful
region for the XGBoost-based wind reconstruction model.

TABLE 3. XGBoost model configuration example.

Hyperparameter Value

Learning rate 0.1
The number of estimators 50
Maximum depth of a tree 2
Minimum sum of instance weight (Hessian) needed in

a child
3

Gamma 2
Subsample ratio of the training instances 0.78
Subsample ratio of columns when constructing each

tree
0.77

L1 regularization term on weights 1.11
L2 regularization term on weights 1

TABLE 4. MSESS for predicted coefficients by XGBoost models
on testing set.

MSESS n = 1 n = 2 n = 3 n = 4

An 0.78 0.85 0.19 0.33
Bn 0.31 0.49 0.54 0.61
a1,n 0.50 0.11 0.44 0.13
a2,n 0.04 0.04 0.00 0.01
a3,n 20.02 0.00 0.00 0.01
b1,n 0.09 0.06 0.08 0.08
b2,n 20.42 20.04 20.05 0.00
b3,n 20.02 0.00 0.01 0.00
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6. Model interpretation

Now we analyze the dependence of the symmetric and
asymmetric winds fields on predictors to gain insights about
the physical controls of TC surface wind structures. To do so,
we developed a sequence of diagnostic XGBoost models,
which are developed the same way as the reconstruction
XGBoost models, but with predictors added one at a time
ordered by how much each predictor reduced model’s loss
function (i.e., the difference between prediction and observa-
tion), going from largest reduction to least reduction. For the
symmetric field, we focused on the first terms of Bessel func-
tion series, A1J0(lnr) and B1J0(lnr), which correct the para-
metric profile. For the asymmetric field, we focused on three
asymmetric modes with relatively large magnitudes: Asymme-
try1,1, Asymmetry1,2, and Asymmetry2,1.

a. Symmetric field

As input variables are added, the performance of the diag-
nostic models improves and eventually stabilizes. We define
essential variables (marked in red in Figs. 9 and 10) as those
that provide the bulk of the model improvement. Note there
are variables in black between two variables in red. It suggests
that the variables in black are related with their preceding

variables in red (i.e., already recognized as essential), hence
they appear relatively unessential. For example, Vmax (black)
locates between Rmax (red) and T200d (red) in Fig. 9b. It
implies Vmax is correlated with Rmax. As a result, they achieve
similar loss function reduction and are ordered consecutively.
It is not hard to imagine that the performance of diagnostic
XGBoost with only Rmax included is close to the performance
with both Vmax and Rmax included due to these two variables’
correlation. Although outflow temperature (T200d ) does not
achieve loss function reduction as much as Vmax, it brings
new information into diagnostic XGBoost. Thus, when it is
included, it increases diagnostic XGBoost performance more
than Vmax. Therefore, Vmax is illustrated as unessential rela-
tive to Rmax and T200d .

In Fig. 9a, for the inner eye coefficient A1, nearly all the
diagnostic model improvement comes from the first variable
Vmax, hence Vmax is the only essential variable for predicting
A1 and provides most of the information needed to correct
the Willoughby06 inner eyewall profile. Further analysis also
shows that there exists a rather strong positive linear relation-
ship between Vmax and A1, which reflects the key role that
Vmax plays in setting inner-eyewall wind structure. In the case
of outer eye coefficient B1 (Fig. 9b), the essential variables
are Rmax, T200d , dS/dt, RHha , and lat. This collection is much

FIG. 7. A reconstruction case study of one wind field from Hurricane Isaac at 1600 UTC 28 Aug 2012. Plotted wind fields are in Earth
coordinates with radii up to 300 km from storm center, and the dashed circle and the small number beside it indicate the locations of 1, 2,
and 3 Rmax. Land coastline is also plotted, and the red star marks New Orleans, LA. Black and red arrows indicate the translation and
shear directions, respectively. (a) HWIND truth, (b) approximation, and (c) reconstruction. (d)–(f) Errors from the approximation (against
the truth), the reconstruction (against the truth), and the XGBoost prediction space (against the approximation).
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more diverse and includes information from various sources
such as storm intensity change (dS/dt), inner core size (Rmax)
and location (lat), and outflow temperature (T200d ).

b. Asymmetry magnitude

Next, we use coefficients predicted by diagnostic models
to construct asymmetries. In Fig. 10, there is a general
reduction of R2 with increasing m and n, which agrees with
the conclusion from Table 4 that the predictability of higher

wavenumber asymmetries is lower than that of lower wave-
number ones.

Figures 10a–c demonstrate how the magnitudes of the dom-
inant asymmetries (M1,1, M1,2, andM2,1) relate with input var-
iables. The R2 curve of M1,1 roughly stops increasing after
T200d suggesting that the essential variables for predicting
M1,1 are MT, lat, MTz, RHla , and T200d . In particular, storm
translation variables (MT and MTz) contribute over half of
the performance improvement by all essential variables.
This behavior is not surprising since storm translation is a

FIG. 8. Mean square error skill score (MSESS) of XGBoost reconstructed wind from testing set on normalized radius. (a),(b) The
MSESS of the reconstructed symmetric fields comparing to symmetric field climatology and Willoughby06 parametric fields. (c)–(e) The
MSESS of the reconstructed asymmetric fields comparing to the HWIND climatology in Earth, motion, and shear coordinates. (f)–(h) As
in (c)–(e), but for the full (symmetric 1 asymmetric) wind fields. Larger positive MSESS values indicate where the XGBoost reconstruc-
tion has relatively larger skill compared to the HWIND climatology in the indicated reference coordinates.
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determining factor on wind field asymmetry (e.g., Ueno and
Bessho 2011; Sun et al. 2019). Including humidity and temper-
ature variables (RHla and T200d ) supports the suggestions
from Loridan et al. (2017) that the inclusion of additional
environmental conditions may have positive impact on sur-
face wind estimation. The appearance of lat may be explained
by its climatological connection with environmental condi-
tions such as temperature and humidity. Essential variables
for M1,2 are Rmax, lat, MT, and T200. MT and lat are present
here roughly for the same reason as in the case of M1,1. Rmax

contributes storm size information. Storm center temperature
(T200) has a strong connection to storm intensity and storm
center latitude. For M2,1, the important variables are: RHl,
Rmax, T200, RHh, and lat, which all have been recognized as
important in the previous cases ofM1,1 andM2,1.

To sum up, the main storm features affecting asymmetry
magnitude are storm location, inner core size, and translation
speed, of which translation speed plays the dominant role.
Environmental variables related to humidity and temperature
also contribute to the asymmetry magnitude prediction to
some degree.

c. Asymmetry phase

1) R2 ANALYSIS

Asymmetry is also parameterized by phase [Pm,n, Eq. (8)],
that is, how each asymmetry rotates in response to a storm or
environment variable. It can be defined in Earth, motion, and
shear coordinates (relative to north, storm translation, and
wind shear directions), unlike the magnitude which is the
same across coordinate systems. Here we stick with the Earth
coordinates as our wind reconstruction model, and follow the
same procedure as the last section to analyze how asymmetry
phase in Earth coordinates relates with input variables.

Figures 10d–f show the R2 analysis on asymmetry Earth
phase. The R2 curve of P1,1 levels off at the third variable. In
particular, the first variable, MTz, brings in the biggest
increase of R2 indicating zonal direction components of storm
motion contain most of the information necessary to predict
P1,1. Other essential variables for P1,1 are MTm, lat, and SH.

It is noteworthy that in terms of wind shear–related variables
(e.g., SHz, SHm, and SH), only SH is barely recognized as an
essential predictor. It indicates that wind shear does not affect
P1,1 as strongly as reported in previous studies (e.g., Uhlhorn
et al. 2014), or wind shear is highly related with storm motion.
When it comes to P1,2, five variables: lat, T100d , P 2 S, RHla ,
and SHza , are essential. Besides wind shear, storm location
(lat), temperature (T100d ), and humidity (RHla ) variables are
also identified as important. It is not surprising considering
they have already been shown to be connected to asymmetry
magnitude in the last section. As for the inclusion of intensity
variable (P 2 S), it can be explained by its dependency on
wind shear. For P2,1, the R2 curve reveals that the important
variables are lat, SHma , P 2 S, RHla , SH, Vmax, and RHl. This
time one more storm intensity variable (Vmax), which has
strong correlation with P 2 S, is included.

In summary, storm center latitude is important for the pre-
diction of all three phases. P1,1 is mainly controlled by storm
motion. For P1,2 and P2,1, more diverse information is needed
for their prediction including wind shear, storm intensity, tem-
perature, and humidity.

2) CIRCULAR DISTRIBUTION ANALYSIS

Next, we conduct analysis on circular distributions of asym-
metry phases to show how they vary with the predictors iden-
tified in the R2 analysis. The circular distribution analysis on
P1,2 and P2,1 does not reveal any strong predictor correlation,
and only results for P1,1 (i.e., the phase of the asymmetric
wind component for wavenumber one in the azimuthal and
radial directions) are presented here.

Figure 11 demonstrates circular distributions of P1,1 condi-
tional on storm translation speed magnitude (MT), direction
(MTu), vertical wind shear magnitude (SH), direction (SHu),
and shear direction relative to translation direction (SHMT

u ).
In particular, MTu and SHu are defined in Earth coordinates
ranging from 21808 to 1808 such that 08, 908, 1808 (or 21808),
and 2908 represent east, north, west, and south, respectively.
Note that we also shifted P1,1 into motion and shear coordi-
nates to facilitate phase-predictor relationship illustration.

FIG. 9. The R2 of Bessel function coefficientsA1 and B1, which are responsible for parametric wind profile correction
inside and outside the Rmax, respectively. The R

2 is calculated from predictions of the diagnostic XGBoost models that
are trained and run with inclusion of one more predictor at a time. The red dots represent mean R2 from tenfold cross
validation and the vertical bars denote the variance of the validation. Along the x axis only the first 15 variables are
presented, and those in red are regarded as essential. The Bessel function associated with A1 and B1 is also plotted at
each panel’s corner.
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In Fig. 11a, we analyze P1,1 conditional on translation
speed magnitude (MT). D1 represents cases from the lowest
quartile of values of MT (i.e., slowest moving storms) and
D4 represents cases from the highest quartile of values of
MT (i.e., fastest moving storms). The mean MT of D1 cases
is 2 m s21 and that of D4 is 7 m s21, as indicated by small
black numbers on the lower-right part of the panel. From
D1 to D4, storm moving speed increases, but P1,1 stays at
right-of-motion all the time, which suggests that MT does
not affect Asymmetry1,1’s rotation relative to storm motion
direction. Figure 11b shows that P1,1 rotates from left-of-
shear to downshear clockwise as wind shear magnitude
(SH) increases. However, in Fig. 11c, P1,1 remains at right-
of-motion regardless of the increment of SH, which implies

that the pattern observed in Fig. 11b is primary contributed
by storm motion direction.

In terms of translation direction (MTu) in Fig. 11d, D1
denotes cases from the lowest quartile of values of MTu in
which storms move toward east-northeast (MTu mean of 318),
and D4 denotes cases from the highest quartile of values of
MTu where storms move toward west-northwest (MTu mean
of 1678). Even though from D1 to D4 storm motion heading
changes from east to west counterclockwise, P1,1 is always
peaked at right-of-motion. Storm moving direction is again
shown to be the dominant variable controlling P1,1 in motion
coordinates. In contrast, storm-moving Earth-relative direc-
tion is not a dominant variable controlling P1,1. Figure 11e
shows that P1,1 rotates from left-of-shear to downshear with

FIG. 10. As in Fig. 9, but for asymmetry (a)–(c) magnitude and (d)–(f) phase, which are constructed from the coeffi-
cients predicted by the diagnostic XGBoost models. Note that a different vertical axis scaling is used for each panel in
the figure. Panel (a) shows the dominant contribution of storm translation speed magnitude (MT) to the explained var-
iance (R2) for magnitude of the asymmetric TC wind component for wavenumber one in the azimuthal and radial
directions. Panel (d) shows that the zonal component of storm motion (MTz) is the most important factor for predict-
ing the phase of the wavenumber one asymmetry in the azimuthal and radial directions. The eigenfunctions [Ha(m, n)
andHb(m, n)] of each asymmetry are also shown at the corner of each panel.
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shear heading varying from south (2928) to east-northeast
(248) counterclockwise. Again, this pattern is proven to be
actually driven by storm motion direction by Fig. 11f, which
demonstrates that P1,1 concentrates at right-of-motion regard-
less of shear direction. That is, the shear direction relative to
the translation direction covers a wide range of different
angles across the percentiles (see red arrows), yet the wind
field asymmetry P1,1 (in motion coordinates) is consistently to
the right of motion regardless of the shear direction relative
to translation direction.

To sum up, P1,1 derived from HWIND dataset locates at
right-of-motion all the time regardless of the variation of
shear magnitude, shear direction, translation speed magni-
tude, and translation’s Earth relative direction. The observed
rotation patterns of P1,1 in shear coordinates can also be par-
tially explained by storm motion direction. Therefore, storm
motion direction is the dominant predictor controlling the
rotation of Asymmetry1,1. However, when a storm is nearly
stationary, the secondary dominant predictor, wind shear,
plays the most important role.

7. Discussion and conclusions

A downscaling hurricane wind reconstruction method using
XGBoost is developed and evaluated in this study with
HWIND data over the period 2000–14. This method divides
the wind field into symmetric and asymmetric components
and models them separately. The symmetric component is
approximated by a parametric wind profile along with two
series of Bessel functions. The asymmetric component is
expanded in a Laplacian eigenfunction series. Then XGBoost
models are trained with storm and environment features as
inputs to predict the coefficients associated with the Bessel
functions and eigenfunctions.

We experimented with three existing parametric wind pro-
file models: Holland10, Willoughby06, and Chavas15. The
RMSE between Willoughby06 and azimuthally averaged
HWIND profiles, with RMSE maximum around 4, was the
lowest of the three parametric wind profile models in the
range of 1–8 Rmax. Chavas15 is the better performing one
with RMSE maximum less than 4 over the range of 0.5–3

FIG. 11. The P1,1 is the phase of the asymmetric wind component for wavenumber one in the azimuthal and radial directions. This figure
shows histograms of P1,1 conditional on a variable of interest as indicated in each panel’s title. The panel title also shows which coordinate
the P1,1 is in (i.e., motion or shear coordinates). D1 (purple) shows a histogram of P1,1 conditional on a variable of interest at its 0–25 per-
centiles. D2 (blue), D3 (green) and D4 (yellow) are for the 25–50, 50–75, and 75–100 percentiles, respectively. At the lower-right corner of
each panel, we list the mean of the variable of interest at each percentile interval. For each interval we also mark the corresponding P1,1

mean and medium with black and red stars. Shear and storm motion direction of each panel (if applicable) are marked with red and black
arrows. See text for examples and further details.
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Rmax, where winds are relatively strong. Since the Bessel func-
tion series were able to correct all three parametric models
sufficiently well, the final performance did not depend on
which model was used.

Reconstruction performance was assessed in terms of mean
square error skill score (MSESS) computed on an indepen-
dent subset of the data (i.e., testing set) with respect to
a reference reconstruction. For symmetric fields, when the
reference reconstruction was the parametric profile, the
XGBoost symmetric reconstruction had substantially smaller
errors than the parametric wind profile model, especially
within Rmax giving MSESS up to 0.8. The XGBoost symmetric
reconstruction achieved higher MSESS when symmetric cli-
matology was used as the reference reconstruction. In the
case of the asymmetric wind component, the model is skillful
in reconstructing low-wavenumber asymmetries but not high-
wavenumber ones. The model’s error is mainly concentrated
to the east and west in Earth coordinates, upwind-right and
downwind-left in motion coordinates, and downshear-left and
upshear-right in shear coordinates. In terms of full wind fields,
using climatology as reference reconstruction, the model has
positive MSESS roughly over all the areas, but MSESS is par-
ticularly high in the range from 0.5 to 3 Rmax, where severe
TC damage concentrates. However, some details of the per-
formance patterns observed here may be specific to the rela-
tively small number of storms in the testing dataset.

In addition to wind reconstruction, the model is also a tool
for analyzing relationships between wind asymmetries (mag-
nitudeMm,n and phase Pm,n) and predictors. Asymmetry mag-
nitude is mainly affected by storm location, inner core size,
and translation speed, while asymmetry phase is mostly
controlled by vertical wind shear and storm motion direction.
Further asymmetry phase circular distribution analysis showed
that the wavenumber-1 asymmetry (P1,1) rotates from left-of-
shear to downshear clockwise when shear gets stronger or shear
heading moves from south to east. However, P1,1 always concen-
trates to right of storm motion no matter how its associated pre-
dictor varies. In other words, the rotation of P1,1 is dominantly
controlled by storm motion direction.

Ultimately, we would like to apply this XGBoost-based
wind reconstruction model to generate wind fields for syn-
thetic storm tracks generated by statistical–dynamical down-
scaling models (e.g., Lee et al. 2018, 2020), which output
storm track data along with other environmental conditions.
Our approach is different from other ML-based wind models
such as the one developed by Loridan et al. (2017) who,
except for the storm ambient pressure, used only storm struc-
ture parameters including those hard to obtain from a typical
synthetic storm event set, such as the angle of the maximum
surface wind. Our approach is also quite different from another
recently developed wind reconstruction model that uses a wind
profile model and a numerical TC boundary layer model (Done
et al. 2020). Done et al.’s (2020) approach is more physically
based in that it considers physics of the TC boundary layers and
does not rely so heavily on data. It is also a better tool for esti-
mating TC winds over land because it directly accounts for ter-
rain effects. However, our model is computationally more
efficient by omitting the details in the boundary layer physics.

In future work, it would be of interest to compare our results to
Done et al.’s (2020) and to take into account the terrain effects
for predicting surface winds over land.

There are a number of other aspects worthy of further
exploration in this work. First, the environment variables
used for model development here are monthly averaged
which are less informative than the higher temporal resolu-
tion data used in operational forecasts. However, no obvious
performance improvement was achieved in this study by
switching to higher temporal resolution environment fields
contained in datasets such as Statistical Hurricane Intensity
Prediction Scheme (SHIPS; DeMaria et al. 2005) reanalysis
database (not shown). To assess completely how the temporal
resolution of environment variables impacts model perfor-
mance, more detailed experiments are necessary. Second, the
HWIND dataset is relatively small and only available for Atlan-
tic hurricanes. ML algorithms, however, place high demands on
the training data. Larger datasets might result in better perfor-
mance. QuickSCAT satellite-estimated wind field data (Draper
and Long 2002, 2004), synthetic aperture radar (SAR) wind
speed data (e.g., Mouche et al. 2019; Combot et al. 2020),
and the multiplatform tropical cyclone surface wind analysis
(MTCSWA; Knaff et al. 2011) may be a good option because
they are global data and have high temporal frequency. Last,
the wind fields contained in HWIND are smoothly interpolated,
meaning that they are a truncated version of the true wind.
Thus, to capture higher wavenumber asymmetries, realistic
wind field simulations from higher-resolution global climate
simulations or regional prediction systems (Knutson et al. 2013;
Roberts et al. 2020) might be useful.
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